Borel type bounds for the self-avoiding walk connective constant

نویسنده

  • B T Graham
چکیده

Let µ be the self-avoiding walk connective constant on Z d. We show that the asymptotic expansion for β c = 1/µ in powers of 1/(2d) satisfies Borel type bounds. This supports the conjecture that the expansion is Borel summable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Lower Bounds on the Self-Avoiding-Walk Connective Constant

We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice Zd. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high d, and in fact agree with the rst four terms of the 1=d expansion for the connective constant. The bounds are the best t...

متن کامل

Improved Upper Bounds for Self-Avoiding Walks in Zd

New upper bounds for the connective constant of self-avoiding walks in a hypercubic lattice are obtained by automatic generation of finite automata for counting walks with finite memory. The upper bound in dimension two is 2.679192495.

متن کامل

New Upper Bounds for the Connective Constants of Self-avoiding Walks

Using a novel implementation of the Goulden-Jackson method, we compute new upper bounds for the connective constants of self-avoiding walks, breaking Alm's previous records for rectangular (hypercubic) lattices. We also give the explicit generating functions for memory 8. The new upper bounds are 2.

متن کامل

Self-avoiding walk enumeration via the lace expansion

We introduce a new method for the enumeration of self-avoiding walks based on the lace expansion. We also introduce an algorithmic improvement, called the two-step method, for self-avoiding walk enumeration problems. We obtain significant extensions of existing series on the cubic and hypercubic lattices in all dimensions d ≥ 3: we enumerate 32-step self-avoiding polygons in d = 3, 26-step self...

متن کامل

Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices

We study self-avoiding and neighbour-avoiding walks and lattice trails on two semiregular lattices, the (3.122) lattice and the (4.82) lattice. For the (3.122) lattice we find the exact connective constant for both self-avoiding walks, neighbour-avoiding walks and trails. For the (4.82) lattice we generate long series which permit the accurate estimation of the connective constant for self-avoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010